

Name: Period: Seat#:

TASK #		ANSWER							
		lonic			ovalent	Metallic			
1	Sort by: Ionic, covalent or metallic								
			Polar			Non-Polar			
2	Sort by: Polar or non-polar								
	Sort by:	Dipole-Dipole			London Forces				
3	"Dominant" IMF present – Dipole-dipole or London Forces								
			Hydrogen Bonding	3	No Hydrogen Bonding				
4	Sort by: Hydrogen bonding or No Hydrogen bonding								
	Cost by:	Dipole-Dipole			Hydrogen Bonding				
5	Sort by: Dipole-dipole or hydrogen bonding								
	Sort by:	London Forces		Dipole-Dipole		Hydrogen Bonding			
6	"Dominant" IMF present – London, Dipole-dipole, or Hydrogen Bonding								
7	Rank from: Lowest to Highest expected boiling point	Lowest					Highest		
8	Rank from: Lowest to Highest expected boiling point	Lowest					Highest		

Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

$\mathbf{Q} \#$	Questions							
1	HBr, O_2 and CH ₃ OH all have comparable molecular masses. List the dominant type of IMF, then rank the strength of each compound based on IMFs within the samples. (1 = strongest, 2 = in between, 3 = weakest). Substance IMF Relative Strength HBr O_2 CH_3OH							
2	Circle the substances below that can form a hydrogen bond in its pure form. Explain why the other species couldn't hydrogen bond. C ₂ H ₆ CH ₃ NH ₂ KCl CH ₃ CH ₂ CH ₂ OH CH ₃ OCH ₃							
3	Rank the following compounds from weakest intermolecular forces to strongest. Justify your answers. H_2S I_2 N_2 H_2O							
4	Rank the following from weakest intermolecular forces to strongest. Justify your answers. They are all bent like water) H ₂ Se H ₂ S H ₂ Po H ₂ Te							
5	Using your knowledge of molecular structure, identify the main intermolecular force in the following compounds. You may find it useful to draw Lewis structures to find your answer. PF_3 H_2CO HF							
6	Explain how dipole-dipole forces cause molecules to be attracted to one another.							
7	Explain how London Forces cause molecules to be attracted to one another.							
8	Rank the following compounds from lowest to highest boiling point: calcium carbonate, methanol (CH ₄ O), dimethyl ether (CH ₃ OCH ₃).							
9	Explain why nonpolar molecules usually have much lower surface tension than polar ones.							
10	What is the difference between a regular dipole-dipole force and a hydrogen bond force? What is an example of hydrogen bonding that occurs in your body?							

Dougherty Valley HS Chemistry Bonding and Structure – IMF Card Sort and Practice

Fill out the missing information in the chart below:

Q#	Name		Formula			Type of IMF			
1	Alur	Aluminum sulfate							
2	Ammo	nium phosphate							
3			CO ₂						
4			CaCO₃						
5	Nitrogen trihydride								
6			S ₂ F ₂						
7			P ₂ O ₅						
8	Magnesium nitrate								
9				Pb ₃ P ₂					
Q#	Formula	Lewis Structur	e	Polar or non-polar?	Q#	Formula	Lewis Structure	Polar or non-polar?	
10	CH ₂ F ₂				13	CH₂O			
11	CO ₂				14	SeH₂			
12	NCl ₃				15	NO ₃ -			

Order each group below from strongest to weakest IMF and give the type of IMF:

16	N ₂ , HF, Na, CH ₂ O								
	Formula	- Strongest					Weakest		
	IMF								
17	H ₂ S, NH ₃ , CH ₄ , (NH ₄) ₂ SO ₄								
	Formula	Formula Strongest					- Weakest		
	IMF								